什么是TGV玻璃通孔技术?TGV玻璃通孔的技术特点是什么?详解TGV玻璃通孔技术
发布时间:2023/08/21 14:23

图片


01

什么是TGV

TGV,英文缩写 “Through-Glass Via”,即是穿过玻璃基板的垂直电互连。和TSV相对应的是,作为一种可能替代硅基板的材料,玻璃通孔(TGV)三维互连技术因众多优势正在成为当前的研究热点。


由于硅是一种半导体材料,TSV 周围的载流子在电场或磁场作用下可以自由移动,对邻近的电路或信号产生干扰,影响芯片性能。而玻璃材料没有自由移动的电荷,介电性能优良,不需要沉积绝缘层;同时玻璃热膨胀系数可调,可以降低与不同材料间的热失配;另外,由于大尺寸玻璃面板易于获取,因此玻璃成本约为硅衬底的1/8。机械稳定性强,即便当厚度小于100µm时,翘曲依然较小。

TGV技术面临的关键问题是没有类似硅的深刻蚀工艺,难以快速制作高深宽比的玻璃深孔或沟槽。传统的喷砂法、湿法刻蚀法和激光钻孔法等均存在一定的局限性。感应耦合等离子体( ICP) 干法刻蚀技术控制精度高,刻蚀表面平整光滑,垂直度好,常用于刻蚀高深宽比结构,但各向同性刻蚀严重。由于玻璃衬底上掩膜沉积工艺的限制,在深孔刻蚀时,需要一定的刻蚀选择比。在保证侧壁垂直性与刻蚀选择比的同时提高玻璃刻蚀速率成为目前研究的难点。





02

TGV的制备

TGV通孔制备的方法有喷砂、机械钻孔、干法刻蚀、湿法腐蚀、聚焦放电等,然而上述方法都有明显的缺点,目前TGV通孔制备的使用最广泛的方法是:激光刻蚀与激光诱导变性。

图片




03

TGV的应用
玻璃基板的三维集成无源元件

玻璃基板具有优异的高频电学性能,与二维平面电感相比,采用TGV结构的三维电感具有更好的品质因数。与硅相比,玻璃的介电常数较低,电阻率较高,因而具有较好的高频性能。诸如使用TGV构建的滤波器和双工器之类的无源器件,在确保较小的带内插损和较大的带外抑制能力的同时,还能在尺寸上做小。因此被广泛的应用于集成无源器件(IPD)之中。其次,玻璃板材翘曲可控制在1mm以内,并且无明显结构剥落分层现象。

图片


玻璃通孔的MEMS封装

利用玻璃穿孔技术实现射频MEMS器件的晶圆级封装,采用电镀方案实现通孔的完全填充。

图片


嵌入式玻璃扇出

玻璃通孔还可以在玻璃上制作空腔,进而为芯片的封装提供一种嵌入式玻璃扇出(eGFO)的新方案。实现高I/O密度和高性能的玻璃面板扇出封装,并有效的控制芯片的偏移和翘曲。工艺流程如下图所示:在厚度为180um的玻璃晶片中,先采用激光诱导玻璃变性和化学腐蚀工艺形成玻璃空腔,然后将175um高的芯片放入玻璃空腔总。通过复合材料将芯片和玻璃之间的缝隙填压而不产生空隙,同时保护芯片的背面。对晶圆的顶面进行剥离,形成铜RDL,最后进行后续线路制作、球栅阵列(BGA)制作以及晶圆切片。


图片


TGV的集成天线

首先采用激光诱导刻蚀制备波导缝隙阵列天线玻璃衬底,通过激光在玻璃上诱导产生连续性的变性区,后将变性后的玻璃在稀释氢氟酸总进行刻蚀,玻璃会成块脱落从而形成目标通孔结构。其次,采用物理气相沉积对每层波导缝隙阵列天线玻璃衬底溅射铜层,经过氧等离子体清洗以彻底清除焊盘表面的有机物等颗粒,并使晶圆表面产生一定的粗糙度,为种子层的良好附着创造条件。清洗后的晶圆在烤箱150℃下烘烤60min彻底去除水汽。然后在磁控溅射设备中,晶圆表面溅射一层厚度约为5μm的铜层。最后,采用技术焊料键合技术将5片晶圆键合(具体为:用刮刀以及丝网将10μm厚度的锡焊料印刷到晶圆表面,然后在键合机的真空腔室中以240℃的温度加热,以40N的压力压合5min使焊料融化或相互扩散以达到键合的目的)。

图片


多层玻璃基板多芯片封装

使用导电胶填充玻璃通孔,从而实现多层玻璃基板堆叠,在回流过程中,通过该方案制作的多层玻璃基板的翘曲比传统有机基板要小,通过该技术可以实现高密度布线,同时具有较高的可靠性。工艺流程如图所示:在完成刻蚀开孔的玻璃基板上,采用物理气相沉积对通孔及一侧玻璃衬底制作铜层,经过光刻型干膜贴附未镀层的一侧玻璃,干膜刻蚀完成孔连通后,在通孔内印刷导电胶。然后分别将通孔镀铜和通孔印刷导电胶的玻璃基板进行叠层和热压合。最后,对顶面玻璃基板进行溅射金属,形成铜RDL,bumping后,放置硅芯片完成后续常规封装步骤。

图片




往期推荐:





详解TSV硅通孔技术






屹立芯创 · 除泡品类开创者


屹立芯创作为除泡品类开创者,深耕半导体先进封装技术20余年,专注解决半导体先进封装中的气泡问题,提供多种制程工艺中的气泡整体解决方案。对Mini/Micro LED、芯片贴合Die Attached、灌注灌封IGBT Potting、底部填胶underfill、点胶封胶Dispensing、OCA lamination等工艺拥有成熟应用经验。

图片


屹立芯创以核心的热流和气压两大技术,持续自主研发与制造除泡品类体系,专注提升良率助力产业发展,专业提供提供半导体产业先进封装领域气泡解决方案,现已成功赋能半导体、汽车、新能源、5G/IoT等细分领域。

图片



————————————————

电话:4000202002; 13327802009

地址:南京市江北新区星火北路11号

官网:www.eleadtech-global.com

邮箱:info@elead-tech.com

推荐阅读
屹立芯创蝉联SEMI产品创新奖,除泡品类开创者再获殊荣
2024-04-02
因聚而生 共赴未来 | 屹立芯创受邀参加2024九峰山论坛暨化合物半导体产业博览会
2024-04-11
深耕除泡领域20年,屹立芯创登陆SEMICON CHINA,带来国产除泡芯方案
2024-03-20
屹立芯创三月大事记
2024-04-02
屹立芯创再获殊荣:2023年度发展共赢企业!
2024-02-23
TOP 10! 屹立芯创跻身2023半导体设备新锐企业榜单
2024-01-11
多芯片堆叠封装工艺, 屹立芯创有绝招!
2024-04-24
一键解决芯片键合封装难题!
2024-04-18
多芯片堆叠封装工艺, 屹立芯创有绝招!
2024-04-16
聚焦先进封装工艺,屹立芯创秀出IGBT行业设备解决方案!
2024-04-10
为什么SiC模块未来将由灌胶模块转为塑封模块
2024-04-03
底部填充胶可靠性有哪些检测要求
2024-03-19
SEMICON China 2024 | 倒计时最后一天,屹立芯创邀您共话半导体芯未来
2024-03-19
预约参展 | 屹立芯创与您相约SEMICON CHINA 2024上海展会
2024-03-19
“探讨科技前沿,共话创新未来”屹立芯创交流会圆满结束
2024-03-14
Underfill气泡解决方案-屹立芯创高温真空压力除泡系统
2024-01-18
环氧树脂基底部填充电子封装胶的三大主要问题
2024-01-16
倒装芯片为什么要使用底部填充胶?
2024-01-11
【干货】underfill底部填充胶空洞的原因、检测及分析
2024-01-11
除泡机漏气怎么办?屹立芯创真空除泡机解决您的烦恼!
2023-09-01
3D DRAM,还能这样玩!
2023-08-30
屹立芯创受邀参加第七届中国系统级封装大会,核心技术助力先进封装制程发展
2023-08-24
先进封装 | SiP封装技术之TSV封装失效分析
2023-08-22
屹立芯创与上海交大智研院共建半导体先进封装联合实验室正式落成
2023-07-14
如何去除环氧胶中的气泡?
2023-07-14
屹立芯创携除泡品类正式亮相SEMICON CHINA,卓越国产设备荣获SEMI产品创新等奖项
2023-07-11
SEMICION CHINA | 屹立芯创实力出场,带来除泡品类整体解决方案
2023-07-03
先进封装之面板芯片级封装(PLCSP)简介
2023-06-21
走进华润微电子|屹立芯创参加中半协封测分会与华润微电子对接交流会
2023-06-14
屹立芯创「产学研」深度品牌项目 | “芯火力量”走进深圳大学
2023-06-09
IGBT焊接层空洞的形成及解决方案
2023-06-06
长三角第三代半导体产业知识产权联盟大会召开!屹立芯创成为首届成员企业与技术专家受聘企业
2023-05-11
屹立芯创「产学研」深度品牌项目 | “芯火力量”走进清华大学
2023-05-10
OCA贴合后总是出现气泡问题?请查收这份全贴合气泡分析和经验总结
2023-04-25
半导体减少空洞、提升良率的新方法
2023-04-18
返回列表
业务咨询
扫码咨询
联系我们
返回顶部